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1. INTRODUCTION 

In analyzing the errors of guidance systems, JPL ex- 
perience has indicated that the trcatinent of injection- 
errors as independent random variables may sometimes 
hc a poor appro\.iiii;ition.Statistical calculations of disper- 
sions at the destination, or of the magnitude of a mid- 
coiirse m.ineuver, must take into wcount cross-correlations 
bet\vcen injection errors; the appropriate theory is pre- 
sentcd in this Memorandum. 

The analysis hinges on the properties of multivariate 
Gaussian distributions and linear perturbation theory. 
Referring to the latter, the validit). of the approximations 
of first-order error analysrs can only be confirmed by test- 
ing the linearity of relevant Gerturbations for each par- 
ticular case. No attempt has therefore been made to 
formulate guide lines as to when first-order approxima- 

tions are acceptable and when they are not. It is sufficient 
to say that, in the cases analyzed to date at JPL, the 
application of perhirbation thcwry was amply justified. 

The theory is presented with reference to the problem 
of a single-stage guided rocket, after which consideration 
is given to multi-stage ascents, satellite orbits, calcula- 
tion of the average midcourse maneuver and of the dis- 
persion at a destination in the absence of post-injection 
guidance. 

Section I1 pro\<des the introduction of the appropriate 
theory, with reference to a simple example, viz. the ascent 
of a guided single-stage rocket. The estension to multi- 
stage rockets and the calculation of the dispersion in 
orbital parameters is then presented in Section 111. 
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II.  THE STATISTICAL DlESCRlPTlON OF INJECTION ERRORS 

Consider the case of a single-stage rocket the ascent of 
which is controlled by some guidance system. It  is not 
iiecessary to specify what form of guidance but it may be 
helpful to think of the guidance being as follows: the 
attitude (and hence the thrust vector) of the vehicle is 
siavsi to a (gyro) rduciice ciiieetien ::.hi& is pitched 
over at sonic prcdeterrnined rate. An accelerometer is 
mounted tvith its scnsitive axis along the axis of the 
vehicle, and when the integrated o u t p t  of the accleler- 
ometer attains a certain value the rocket motor is shut off. 
\i'itliout becoming involved in a detailed analysis of such 
a guidance system, some sources of error may be men- 
tioned. 

a. The thrust axis may not be along the vehicle axis so 
that, unknown to the autok':ot. the vehicle is forced to 
fly on a trajrctory \vhicli differs slightly from the standard. 

b. Gyroscope drift (apart from the programmed pre- 
cession ) may also bring about nonstandard trajectories. 

c. A null-shift in the accelerometer may lead to an 
error in the computed axial velocify. 

d. The rocket motor may develop more or less thrust 
than the nominal value, with the result &at the motor is 
shut off \vith the right axial velocity but in the wrong 
position, and so forth. 

In nearly all ciises which arise in practice, nonstandard 
trajectories have two important characteristics: ( 1) the 
source of error is a random quantity distributed approxi- 
mately according to the Gaussian Law (e.g. accelerom- 
eter null-shift)1 and ( 2 )  the. trajectories which are in 
error differ only slightly from the standard, so that linear 
perturbation theory may be invoked to calculate such 
deviations. 

The effect of one error source is first examined and it 
is iissumcd that, for each kind of error, the trajectory of 
the vehicle can be computed either on a digi+al machine 
or analytically. Lcbt the error be Se, \vhich may be thought 
of ;is any one of thy abovementioned errors, and let Sx, 
Sy, 82,  Sr i ,  Sc. &to be the rcsulting pcrturbations in posi- 
tion and velocity at ii fised time after Iauncli. The time is 
chosen to be shortly after the standiird burnout point 
brit sufficicwtly 1;ite so that, on perturbed trajectories. 
burnout al\v;iys occurs before the fistd time. To a first 
order of approsirnil tion ( perturbation theory ) : 

'This thcory is restricted to the inlportant class of unpredictable 
, crror-wurcc.s bvhich are cucsticiit f o r  one flight but which are ran- 

doni \ ;iriiibIes \\ hen comparing one instruinent or rocket motor to 
another. 

2 

Sx -al l e  

l y  -az 8e 

. . . . . . . . . 
sw - 418e 

The ai coefficients are caicuiated andyticaily or by iniro- 
ducing the error Sc in a computing program which simu- 
lates (analog or digital) the vehicle, propulsion and 
guidance systems. 

The error 8c is a random variable in the ensemble gen- 
erated by an infinite number of hypothetical ascents. 
Frirthermore, since 6e is normiilly distributed, so are the 
six injrtction coordinates of Eq. ( Iio\vever, these co- 
ordinates are not characterize", 5 y  six independent normal 
distributions; instead they are described by a sixdimen- 
sional joint distribution. Thus it is shown in statistical text 
books (e.g.. Cram& ) that the probability of the injection 
coordinates being between x and x + dx, y and y + dy. 
etc.. is 

exp ( - # S X r M ' S X ) d x d y . .  . L w  (2 )  1 
3 %  

( 3 )  

and .\I is the moment matrix (covariance matrix) of the 
six-dimensional distrilution. Knowledge of .:I gives a 
complete statistical description of the injection coordi- 
nates. It is calculated as follows: 

(4)  Put SX = A  8e 

where 

'\lathrni,i!'cal Xlcthds of Statistics, by H. CmmPr. i'rinceton 
Univcrsity Prcss, 1957. page 313. 
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then 

AXIX' = A (  Be)' A' ( 6 )  
The ensemble average is now taken of all terms in the 
matrices on Imth sides of Eq. (6). Tl.is gives the moment 
matrix of injection errors - 

A1 = IXSX' = A (  t e )  * A' (7 )  
IVritten out in full, the result is 

tx' w y . .  sxaw 
I J I X  I y 2  . . . . . . .  
. . . . . . . . . . . . . . . .  iu - ( 8 )  
. . . . . . . . . . . . . . . .  

Liz . . . . . .  .G 1 
where v is the standard deviation of the error te. It  will 
tje secn that .\I IS a symmetrical mat5x; the diagonal 
terms are the variances on the six injection errors and the 
other terms are covariances. In order to introduce cross- 
correlation coefficients it is scjmetimes convenient to write 
equation ( 8 )  in the form 

L ow' J 
where (I is the rms injection error in x and p,,. is the CO- 

efficient of cross-corre1a:ion between X and y, etc. The 
coefficient p = f l  for perfectly correlated variables and 
p = 0 for uncorrelated variables. 

Crude analyses of guidance systems have often ignored 
correlation effects, a poor approximation since some in- 
jection variables are invariably heavily correlated, e.g., 
speed and height. 

In matrix notation, Eq. (9) is 

8X - A I E  

where 

I E -  

and A is the ( 6  X n) matrix 

82'  

. . . . .  

562 . - 

. . . .  

. . . .  

The 6n terms of the A matrix would again be computed 
either nnnlyticaily or by perturbing trajectories computed 
on a machine. For n ermr-sources the A matrix could be 
calculatccl by computing n trajectories. 

Provi .led thiit the error-sourccs are random quantities 
with Gimssian distributions, the six injection-errors will 
oncr inore have a six-dimcnsional joint Gaussian distri- 
bution defined by Eq. (2) .  The calculation of the mo- 
ment matrix is now as follows: 

From Eq. (IO) 

SXSX' - ASEIFA' (13)  

and by taking the enscmble average 
- . -  

iM = S.YSXr - ASESE'A' (14) 

The ( n  x n )  symmetric matrix GESE' ( - A )  is the 
moment matrix of the error-sources, but in nearly all 
cases these can !E considered a s  independent random 
variables, t a g .  gyro drift is independent of rocket motor 
performances. In this case the matrix is diagonal: 

a , ' O  0 0 . .  . The calculation of the moment matrix is now general- 
ized to include more than one error source, e.g., acceler- 
ometer null-shift, gyro drift, under or over-performing 
rocket motor. Let the errors due to n soiirces be Sei 
( i  = 1, 2 . . n).  Then, assuming that such errors perturb 
the ascent trajectory only slightly, the injection error may 
be written as linear combinations of the errors due to 
each source. 

I'. :;2;;: ! O  (15) SESE7 - 

the n tliagonnl terms being the varinnccj of the n error- 
sources. 

] 
8 x = a,1 Sel + a12 8e2 + . . + al, I e ,  

8 y = aZ1 6el + U Z Z  k + . . + azm Sen 
The moment matrix of the injection errors can there- 

( 16) 
where in most cases .I is the tliagonal matrix of Eq. (15). 

fore be written 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  M - A 11 A' 

6 w = aGl Se, + an2 I e ,  + . +a:. Se, 

3 
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111. APPLICA';ION TO SATELLITE AND SPACE MISSIONS 

The procculure tlcrivcd in Section 11 was dcvclopcd 
with a singlc-st;ige rocket i n  mind. The same method can, 
Iioiwvcr, be ;ippIirtI to multistcge asccnts and for calcu- 
lating post-injwtion dispersions. 

A. hjectioa Errors of a Mulii'siagi? kcen!  

I n  a inu1tist;igc usccbnt. errors at  first 1)urnout are propa- 
gated through sul)scquent stages a n d  mixed with errors 
in  those stiigcs. A possible difficulty is that some, but not 
;ill, of the crrors clcvc4oped in scp:r;itc stages are corre- 
1;itc.d. For rsnniplc, although with scpiirate rocFet moiors 
for cuch stiige the performance of a motor is independent 
of its prculcccssor, tlic drift in onc certain gyroscope may 
i1ffcu.t all stiiges in a similar manner. 

Sc-verthclcss, cvcn with such complications, the com- 
piitation of the niomcnt niatris of injection crrors (bum- 
out of  the last s t a p )  can be carried out in the fashion 
c.;pl;iined in the prcctding scction. Referring to Eq. (9) 
and ( I O ) ,  the n error-sourccs include those in all stages, 
iiltliough if one crror-source crcatcu errors in more than 
onc stage it is catintcd only once ( c.s., gyro drift in a 
platform used for giiiding d l  st;ig:M). The effect on in- 
jcction of a rnotor-~x.rforinance variation ii; the first stage 
\vould I)c computcd by cissuniing ided performance from 
the motors and gukliincv systcbms of subsequent stages. 
The cffcct on injection of ;i fiunl-stage motor variation 
\vould Iw cmnipritcul issriniing the standard ;iscent tra- 
jcctory up  to the last stage. T;ie effcct of drift in a gyro- 
s m p e  coninion to ;ill stages \vould be computed by 
simulating that drift in a11 stages bat assuming no other 
error sourccs, and so on. 

The formal calculation of the injection moment matrix 
is thcrefore just the same as for the single-stage rocket 
iind Eq. (9 )  through ( 19) apply. Some numerical ex- 
ampks of JI'L anal!.aes iirc included in Section 111-C 
1 ) c h v ;  such ciilculiitioiis includcd the c4cct a long coast 
( 20 minutc.s) l)tt\vcwi Iiurnorit of the scyond stage and 
ignition of the third stage. 

6. Dispersion of Earth-Satellite Orbital Parameters 

Siippose that ;i s;itellitcs has been elaccd into orbit and, 
by the methods discussed above, the moment matrix Jf 
injcction errors has been evaluated. The calculation of 
the tlispersion in the orbital p;ir;uneters is now consid- 
crcd. The six pirametcm commonly employed are as 
follows: 

4 

u - semi-major axis (or the period) 
e - eccentricity 
i - incliniition of the plane of the orbit to the 

cqu:itorial plane 
Q - longitutle of the node 

w - argument of the perigee 

a mean anomaly at  epoch 

For highly eccentric orbits these parameters would be 
acccpta1)le. but for near-circular orbits, perturbations in 
the eccentricity e are not iinearly related 19 perturbations 
in the injection coordinatcs ( e > 0, except for a circular 
orbit \vhcxrc c = 0). For this rcason an alternative param- 
eter is rt~onimentlcd, viz. the difference between the 
apogee R ,  ;ind pcrigce R,. By definition of these quan- 
tities p = ( R .  - R,) is always positive but by taking 

(where X is an injection coordinate) the difficulty is 
avoided'. Instead of eccentricity c, the parameter p ( = 
R., - R , )  \vi11 thcrefore be used. 

;\ssuming linear perturbation theory to be valid, the 
six injection errors of Eq. (3) are linearly related to 
errors in the orbital parameters. Thus 

=C 

\\here the elcmcnts of the ( 6  x 6) matrix C may be cal- 
crilatcd iinalytically or by machi.ie. Presumably the ( x ,  
y, 2 )  ;iscs \vould be chosen \vith x as the local vertical 
and y in the horizontal and orbital planes. 

The injection errors satisfy a six-dimensional normal 
distribution and, since the errors in the orbital param- 
rters ;ire linearly rc.latcd to the injection errors, they will 
dso satisfy a si\-dimciision;11 normal distribution with the 
follo\ving moment matrix: 

'JPL Internal Technical Memo Xo. 528, by \V. Kizner. 
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- - -  
Sali  8uSO bubo X I  

- -  
(symmetric) bo' S w S a  I 

- C M C  

(18) 

di being the moment iriairix of i i i j c c t h  Ciiors. C'SGS!!~. 
only the vns errors in the orbital parameters are of in- 
terest, i.e., tlre diagonal terms of CitfC'. 

C. Cofcufotion of the Average Midcourse Maneuver 
If a midcourse maneuver is to be applied, the m a p i -  

hide of the maneuver clepcnds on the size and cross- 
correlations of the injcction errors. Given the guidance 
system and the moment matrix of injection errors, it is 
important to be able to estim;lt~ the rcquired midcourse 
maneuver. For a given midcourse point un a given tra- 
jectory (lunar or intciplanetary) it can be shown'that, 
to a first order of approximation, the three components 
of the maneuver are given by 

where K is a (3 X 6)  matrix consisting of elements com- 
puted on the standard trajectory. 

I t  follows that 

[ 5 ] [V, V, V,] 3 KSXSXrK' ( 2 0 )  

and by taking the ensemble average 

\\,here Jf is the moment matrix of injection errors. KMK' 
is the moment matrix of the three-dimensional normal 
distribution of the components V,, V,, V,. When KJIK' 
has been coinputed numerically the sum of the three 
diagonal terms gives 

'1ntc.rpl;inrt;lr): Po\t-!njrction Ciiid.rnce, by A. R.  M. Noton JPL 
External Pubkition So. 653, 1959, page 34. 

- 
V,'+ v,' + = (V,' + Vi' + V , l )  (22 )  

i.e., the mcan-square viilue of the midcourse maneuver. 

For approximate analyses, it miiy be sufhient to know 
the rms value of the maneuver; it may be reasoned that, 
if a midcoi!rse rocket can tleliver three times the rms 
value, then i t  can cope with ;I very high proportion of all 
possiblc C;ISCS. IIowever. although V,, Vu and V, satisfy 
a joint Gaiissiiin distribution, the distribution of (V,' + 
Vu2 + Vzz)',' is not Gaussian. The caicuiotion of the dis- 
trihution function of the magnitude of the maneuver is 
beyond the scope of this paper. 

D. The Dispersion Ellipses ot the Moon 
or the Planets 

In the absence of post-injection guidance the disper- 
sion st  the destination is a function of the choice of the 
trajectory and the errors a t  injection. The disperrion may 
be measured in terms of miss components on the surface 
of the moon or miss components at the planets measured 
in a plane pcrpendicolar to the ilpproach velocity vector. 
IVhatevcr the coordinates employed, the two components 
of miss will be referred to as SI and ,\I *. 

From perturbation c-ilculations on the standard tra- 
jectory a L' m .trix can be formed such that 

[ -U8X 

U being a (2  x 6) matrix. Now 

(23)  

(24)  

( 2 5 )  

i.e., the moment matrix of the two dimensional Gaussian 
distribution for the hvo miss components. Put 

UMU'-[' h b  "1 
the3 

and the two-dimensional probability density function is 
(6. Eq. 2): . 

1 
2* (ab-6 ' )  u 

b 



~ -~ 

I 

JPL TECHNICAL MEMORANDUM NO. 33-15 

Pammn.tw 

0.. fl 

0,. fi 

e*. ft/ser 

0. millirod 

0.. fl 

0.. ftlsw 

PI. 

P.. 

P a l  

P.. 

P a  

P.Y 

P- 

It will be observcd that contours of constant probability 
arc. ellipses in  the (MI, M,) plane, 

bM,' - 2h M,M2 + a M,'= constant ( 2 9 )  

It can be shown that, for such im ellipse having scmi- 
niinor and semi-major axes k A l  and kA2 respectively, where 

Systwa 1 

15.900 

14,800 

15.6 

0.733 

4 1 3 0  

152 

-0.71 5 

0.794 

-0.700 
-0.490 

0.952 
-0.481 

0.753 

the pro1)al)ility of the miss being within such an ellipsz is5 

P- 1 - a-L= ( 3 1 )  

(\rhrn k - 1, 9 and 3. P - 0.40, 0.86 and 0.99 respec- 
tively.) These ellipscs liiive the major mis inclined at an 
angie e to the 31, anis, where 

As a numerical example, some results of JPL analyses 
are quoted. It should be notal that the numbers do not 
rcftxr to ail cxistirig or ;inticipatcd guidance system. The 
coordinatcs are defined in the skctch, the y-axis k i n g  the 

'1 SPEEDY 

STAN OAR0 
IN JECnOW 

z 

'Prt4iction of Ballistic hlissile Trajwtories from Radar Obsena- 
tioiis. by 1. Shapim. SlcGaw-Hill Book Co., 1958, page 87. 

local vcrtical at the standard injection point. Table 1 pre- 
sents the results for tlircvt slightly different guidance sys- 
terns"; the table includes rms errors, cross-correla tion co- 
efficients (Eq. 8)  a s  deduced from the moment matrix 
of injection errors, *IF? the paramctcrs of the dispersion 
ellipse. 

Table 1 .  66-hour lunar impact trajectory. 

Group 

rms 

injection 

.non 

cross- 

correlation 

coefficients 

of injection 

erron 

99 x 
probability 

ellipr. 

Syskm 2 

13,700 

10,200 

11.7 

0.5 I1 

4 1,300 

152 

-0.902 

0.917 

-0.823 

-0.969 

0.904 
-0.872 

0.753 

System 3 

13,500 

10,000 
11.1 

0.508 

40,200 

96 

-0.910 

0.916 
-0.829 

-0.984 
0.905 

-0.887 
0.934 

semi-mojw 7.770 2,300 2.250 
oxis. mi. 

semi-mina 1.710 1 910 1 706 1 
oxis. mi. I 

Inspection of the table reveals that, if the guidance 
System were judged merely on the basis of rms injection- 
nrors, then System 3 would appear to be only a little 
better than System 1. Ho\vever, it will be observed that 
the dispersion c4lipse of Systcm 3 has only 0.29 the length 
of th.tt of System 1. The relative accuracy of System 3 
is mainly attributable to the high correlation cocfficients; 
crrors are tending to compelisate for each other, e.g., 
height and spwd are almost ptrfcvtly correlated in Sys- 
tem 3. The effects of such correlations can be taken into 
accoiiiit only by the procedures outlined in this Memo- 
randum. 

- 
'Froin ~ ~ i i p i l ~ l i s h ~  studies by C. C. Pfeiffer. A. Dickinson. and 

C.  E. Knhlhase. 
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